
DOI: 10.1142/S0218195913500027

September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

International Journal of Computational Geometry

& Applications
Vol. 23, No. 1 (2013) 29–48
c© World Scientific Publishing Company

COMPUTING PUSH PLANS FOR DISK-SHAPED ROBOTS

MARK DE BERG∗ and DIRK H. P. GERRITS†

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

Den Dolech 2, 5600 MB Eindhoven, The Netherlands
∗mdberg@win.tue.nl
†dirk@dirkgerrits.com

Received 9 March 2011
Revised 17 October 2012

Communicated by Nancy Amato

ABSTRACT

Suppose we want to move a passive object along a given path, among obstacles in the

plane, by pushing it with an active robot. We present two algorithms to compute a push

plan for the case that the object and robot are disks and the obstacles are non-intersecting
line segments. (When only the object’s destination and not its full path is given these

algorithms can still be used as subroutines in a larger algorithm to compute such a path.)

The first algorithm assumes that the robot must maintain contact with the object at all
times, and produces a shortest path. There are also situations, however, where the robot

has no choice but to let go of the object occasionally. Our second algorithm handles such

cases, but no longer guarantees that the produced path is the shortest possible.

Keywords: Path planning; pushing.

1. Introduction

A fundamental problem in robotics is path planning,1 in which a robot has to find

ways to navigate through its environment from its initial configuration to a certain

destination configuration, without bumping into obstacles. Many variants of this

problem have been studied, involving widely differing models for the environment,

and for the robot and its movement. In manipulation path planning2 the robot’s

goal is to make a passive object, rather than the robot itself, reach a certain destina-

tion. Several different kinds of manipulation have been studied, including grasping,2

squeezing,3 rolling,4 and even throwing.5

The manipulation path-planning problem studied here involves pushing.2 In

particular, we want a disk-shaped robot to push a disk-shaped object to a given

destination in the plane among polygonal obstacles. Nieuwenhuisen et al.6 devel-

oped a probabilistically-complete algorithm for this based on the Rapidly-exploring

29

http://dx.doi.org/10.1142/S0218195913500027


September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

30 M. de Berg & D. H. P. Gerrits

Random Trees path-planning algorithm.7 This algorithm builds a tree of reachable

positions by repeatedly generating object paths and trying whether the pusher can

make the object follow such a path. Thus, a subroutine is needed to push the object

along a given path.

1.1. Problem statement

Let P be a disk-shaped pusher robot of radius rp in the plane, let O be a disk-shaped

object of radius ro > rp, and let Γ = {γ1, . . . , γn} be a set of non-intersecting line

segments called the obstacles. The pusher P is holonomic: it can move freely in two

dimensions. For the object O we are given a collision-free path τ to follow, consisting

of k convex, constant-complexity curves τ1, . . . , τk called the path sections. A curve

from a to b is called convex if the region bounded by the curve together with the line

segment ab is convex. By a constant-complexity curve we mean that such a curve

takes O(1) space to represent, and that we can perform several basic operations on

them in O(1) time: computing tangents through a point for a curve, and computing

bi-tangents and points of intersection between two curves.

Given τ in this manner, we want to compute a collision-free path σ for P such

that P pushes O along τ when P moves along σ. We allow P and O to slide along

obstacles, which is called a compliant motion. The computed path σ will be called

a push plan. We distinguish two kinds of push plans: contact-preserving push plans

in which the pusher maintains contact with the object at all times, and unrestricted

push plans in which the pusher can occasionally let go of the object.

1.2. Related work

Nieuwenhuisen et al.6 present an algorithm for this problem that assumes the object

path consists only of line segments and circular arcs. After preprocessing the n

obstacles in O(n2 log n) time into an O(n2)-space data structure, they can compute

a contact-preserving push plan in O(kn log n) time. If one assumes low obstacle

density,8 then the latter bound can be improved to O((k+n) log(k+n)). In neither

case does their algorithm guarantee that the constructed push plan is optimal in

any way.

Agarwal et al.9 consider the problem where only the final destination of the

object is given directly, without such a subroutine for a given object path τ . For

this they give an algorithm for finding a contact-preserving push plan for a point-size

pusher and a unit-disk object. The algorithm discretizes the problem in two ways:

the angle at which the pusher can push is constrained to 1/ε different values, and

the combined boundary of the obstacles is sampled at m locations to give potential

intermediate positions for the object. The algorithm then runs in O((1/ε)m(m +

n) log n) time, but is only guaranteed to find a solution if 1/ε and m are large

enough. The algorithm assumes the pusher can get to any position around the

object at all times, which is true for their point-size pusher but not for our disk-

shaped pusher: there may be obstacles in the way.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 31

1.3. Our results

We present a new approach to compute push plans for a disk-shaped robot pushing a

disk-shaped object along a given path. It improves on the method of Nieuwenhuisen

et al. in several ways. First, our method can compute shortest contact-preserving

push plans, minimizing the distance traveled by the pusher. Second, it can be gen-

eralized to computing unrestricted push plans. Finally, our approach can deal with

more general paths than the method of Nieuwenhuisen et al. Table 1 summarizes

our results and those of Nieuwenhuisen et al., both for high and low obstacle den-

sity. Note that our algorithms are not only more powerful, they also have better

running times; in particular, we need neither O(n2 log n) time nor O(n2) space for

preprocessing.

Table 1. A comparison of the asymptotic running times of Nieuwenhuisen’s approach and ours

for computing contact-preserving (CPPP) and unrestricted push plans (UPP).

High obstacle density Low obstacle density

Nieuwenhuisen Our method Nieuwenhuisen Our method

Preprocessing n2 logn n logn (∗) n2 logn n logn (∗)

Any CPPP kn logn kn logn (∗) (k+n) log(k+n) (k+n) log(k+n)

A shortest CPPP — kn logn (∗) — kn logn (∗)

Any UPP —
kn log k+

—
(k+n) log(k+n) +

kn2 logn kn

Note: Entries marked (∗) are expected times. For worst-case times, replace logn by log2 n.

2. The Configuration Space

A general-purpose technique for path planning is to translate the problem from

the work space into the configuration space.1 The work space is the environment

in which the robot has to find a path. A configuration is one specific placement

of the robot in this space, specified by f parameters, where f is the number of

degrees of freedom of the robot. Each point in the f -dimensional configuration

space corresponds to a configuration in the work space. Some configurations are

invalid because the robot would intersect an obstacle and these form the forbidden

(configuration) space. The remainder is the free (configuration) space, and a path

through it represents a solution to the original path-planning problem in the work

space.

To apply this technique to our problem, we first clarify a few details left out

from the problem statement, and then discuss what our configuration space looks

like and how to compute it. Finding paths through the configuration space, and

mapping these back to push plans, is discussed in Secs. 3 and 4.

2.1. Preliminaries

We assume (as do Nieuwenhuisen and Agarwal et al.) that pushing is quasi-static.11

That is, when pushing stops the object also stops instantly. This is realistic if



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

32 M. de Berg & D. H. P. Gerrits

(a) (b)

Fig. 1. (a) A straight-line non-compliant path section, and (b) a hockey-stick non-compliant path

section. In this figure and all that follow, the pusher P is depicted as the smaller, lighter disk and

the object O as the larger, darker disk. Obstacles are shown as fat, black lines and the areas they
bound are filled with gray. Motion is depicted by arrows; the boundaries of P and O at the current

position are solid, and are dashed at past or future positions.

pushing is done very slowly, or if there is a large amount of friction between the

disks and the floor. To push the object along a straight-line path in the absence

of obstacles, the ray from the pusher’s center to the object’s center will have to

line up exactly with the desired direction of motion, as in Fig. 1(a). When pushing

even slightly off-center, the object’s motion will instead be curved. If we assume

the point of contact between the two disks never “slips” during a push, the result

is a so-called hockey-stick curve,9 as seen in Fig. 1(b). Given such a straight-line

or hockey-stick motion for the object, the pusher motion that will accomplish it is

fixed.

In contrast to such non-compliant motions, a compliant motion uses obstacles

as a guide for the object, as in Fig. 2. On the left the object is pushed straight

along the length of an obstacle, in the middle the object is pushed in a circular arc

around an obstacle endpoint. Compliant motions are more robust in the presence of

sensor inaccuracies, and allow the pusher to avoid obstacles more easily, as the same

object motion can be achieved by a whole range of pusher motions. At any point in

time, the set of allowed positions for the pusher’s center from which pushing would

result in the desired object motion form a circular arc called the push range. The

size of this arc can be computed from the friction coefficients between the pusher

and the object and between the object and the obstacle.10

We assume that the given object path τ : [0, 1] → R2 consists of k constant-

complexity pieces τ1, . . . , τk connected end-to-end. We call each piece a path section.

A path section represents one of the four aforementioned motions: a straight-line or

hockey-stick non-compliant motion, or a straight-line or circular compliant motion.

To avoid four-way case distinctions in the rest of this paper, we introduce an abstract

well-behaved path section which generalizes these four. As an added benefit, this

makes our algorithm more general: we can easily handle other types of path sections,

as long as they are well-behaved. For example, one may wish to incorporate non-

compliant motions for which the pusher has to follow a non-straight path, or in

which the contact between the two disks does slip during the push. We call a path

section τi well-behaved if it is a convex, constant-complexity curve and satisfies the



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 33

following conditions (see Figs. 2 and 3):

(W1) We can compute the push range pri(s) for any object position τi(s) along

τi in O(1) time. Furthermore, this push range is such that the ray from O’s

center in the direction of τi always forms an angle of more than 90◦ with a

ray from O’s center to a pushing position. (This is natural, since otherwise

the pusher would pull the object rather than push it.)

(W2) Let A =
⋃
s∈[0,1] pri(s) be the area swept out by the push range as the object

moves along τi. Then A does not intersect itself, and A is bounded by four

convex, constant-complexity curves (the push ranges at either end of τi, and

the paths traced out by the two end points of the push range) which can be

computed in O(1) time.

>90◦

∇τi
τi

A

d

τi

A

(W1) (W2) (W3)

Fig. 2. The three properties satisfied by well-behaved path sections. The push range is shown at

a few locations with a sector on the object along with a circular arc outside the object giving the

valid locations for the pusher’s center.

τi

A

Fig. 3. A path section where well-behavedness property (W2) is not satisfied (the area swept out

by the push range self-intersects). The path section can be broken up into three well-behaved path
sections.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

34 M. de Berg & D. H. P. Gerrits

(W3) For compliant sections there is a constant d = O(ro) such that, after the

object has moved a distance d along the path section, the push range becomes

such that the pusher can remain in the sweep area of the object for the rest

of the section. Furthermore, the smaller push range that keeps the pusher in

the object’s sweep area satisfies (W2).

For correctness of our algorithms, (W1) and (W2) suffice, but (W3) allows us to

derive better running times in case the obstacles are not too densely packed, as will

be discussed in Sec. 2.4. Condition (W3) basically states that for long path sections

we need only maneuver around obstacles during the beginning of the path section.

In compliant sections any later obstacles can be avoided by “hiding” behind the

object, and in non-compliant sections obstacles cannot be avoided at all. Note that

circular compliant sections satisfy (W3) trivially as their total length is O(ro), and

straight-line compliant path sections can be shown to satisfy (W3) as well,10 as seen

informally on the right in Fig. 2.

It is then fairly easy to see that all three criteria are satisfied by straight-line

and circular compliant path section, as well as by straight-line non-compliant path

sections. As these are the path sections handled by the algorithm of Nieuwenhuisen

et al.,6 our algorithm is at least as general as theirs. A hockey-stick curve (whose

equation is given in Appendix A) is not strictly of constant complexity by our

definition, but it can be closely approximated to any desired degree by a sequence

of quadratic Bézier curves. Thus hockey-stick non-compliant path sections can also

be seen as well-behaved, and we can handle them uniformly with other types of

path sections. In Nieuwenhuisen’s approach they are handled outside of the main

algorithm by ad hoc numerical methods.6

2.2. Shape of the configuration space

A configuration in our problem is a placement of both the pusher and the object in

the work space. Recall that the object is restricted to move along a given path τ ,

and assume for now that the pusher and object maintain contact at all times (this

latter restriction will be lifted in Sec. 4). Under these conditions, the configuration

space is 2-dimensional. The point (s, θ) ∈ [0, 1]×S1 in the configuration space will

represent the configuration with the object’s center at τ(s) and with θ being the

pushing angle: the angle that the ray from the pusher’s center to the object’s center

makes with the positive x-axis. (Note that the configuration space is cylindrical,

but for clarity we will depict it “flattened” as a rectangle.)

We assume that path τ does not take the object through any obstacles, so a

configuration can be invalid for only two reasons: either the pusher intersects an

obstacle, or the pusher is outside of the push range. We therefore consider the for-

bidden space to be the union of two kinds of shapes. A configuration-space obstacle

Cγ consists of the configurations where the pusher intersects obstacle γ. A forbidden

push range FPRi consists of the configurations where the object is on the interior



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 35

τ 0

0 1

+π

−π

0

0 1

+π

−π

(a) (b) (c)

Fig. 4. (a) An example work space, (b) its configuration space, and (c) its reduced configuration

space (defined below). The s-axis is horizontal, the θ-axis is vertical. Configuration-space obstacles

are drawn dashed in light gray, the forbidden push range is drawn in dark gray.

of path section τi and the pusher is outside the push range. By Cγ,i we’ll mean the

restriction of Cγ to configurations with the object on path section τi. The forbidden

space is then the union of k(n+1) shapes: n obstacles and one forbidden push range

for each of the k path sections. Figures 4(a) and 4(b) show an example for one path

section.

Theorem 1. The configuration space for each path section has complexity O(n)

(that is, the boundary of the forbidden space consists of O(n) vertices and constant-

complexity curves between them), and thus the total configuration space has com-

plexity O(kn).

Proof. Since a path section τi has constant complexity, so do FPRi and Cγ,i for

all obstacles γ ∈ Γ. We will prove that
⋃
γ∈Γ Cγ,i has complexity O(n). It then

follows that FPRi ∪
⋃
γ∈Γ Cγ,i, the forbidden space for one path section, also has

complexity O(n), yielding O(kn) in total.

The boundary of Cγ corresponds to configurations where the pusher is com-

pliant with γ. Such pusher positions all lie at distance rp from γ and thus form

the boundary of the “capsule” γ ⊕ D(rp). Here “⊕” denotes the Minkowski sum

(A ⊕ B = {x + y | x ∈ A, y ∈ B }), and D(r) denotes an origin-centered disk of

radius r. A point of intersection of Cγ1,i and Cγ2,i corresponds to a configuration

where the pusher is compliant with both γ1 and γ2, and that pusher position must

thus be an intersection of the corresponding capsules. These capsules form a collec-

tion of pseudodisks,12 and therefore have a union complexity of O(n). Thus there

can only be O(n) positions where the pusher would be compliant with more than

one obstacle. Each of these pusher positions could show up in the configuration

space more than once, since path τi could take the object past this point multiple

times. However, this cannot happen more than O(1) times, since τi is a convex,

constant-complexity curve. Thus
⋃
γ∈Γ Cγ,i has complexity O(n).



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

36 M. de Berg & D. H. P. Gerrits

2.3. Computing the configuration space

To compute the configuration space in a form that allows us to easily compute a

push plan, we do the following:

(1) Compute Cγ,i for all γ ∈ Γ, and all τi ∈ τ .

(2) Compute FPRi for all τi ∈ τ .

(3) Take the union of these shapes to get the forbidden space.

(4) Divide the free space into cells by a vertical decomposition.

(5) Create the cell graph of the decomposition. Nodes in this graph correspond to

cells and there is a directed edge from cell c1 to c2 if and only if c1’s right

boundary touches c2’s left boundary.

The running time of this approach is expressed by the following theorem:

Theorem 2. The configuration space can be computed in O(kn log2 n) time worst

case, or O(kn log n) expected time, both using O(kn) space.

Proof. For each of the k path sections, Steps 1 and 2 can be performed in O(n)

time as each of these n+ 1 shapes has O(1) complexity. The curves bounding these

shapes have complex equations not amenable to exact intersection computations

needed for Step 3. However we can work with work-space analogues of these shapes

to compute their vertices and combinatorial structure. For example, the points of

vertical tangency of Cγ,i correspond to intersections of τi with the capsule γ ⊕
D(2ro + rp), and the intersection of Cγ,i with the vertical line s = s′ corresponds

to the intersection of γ ⊕D(rp) with a circle of radius 2ro + rp centered at τi(s
′).

Thus, all basic operations required (such as deciding whether one point of vertical

tangency lies to the left or to the right of another) can be performed in O(1) time.

With this “trick”, Step 3 can then be performed by a deterministic algorithm by

Kedem et al.12 that uses O(n log2 n) time, or a randomized incremental algorithm

by Miller and Sharir13 that uses O(n log n) expected time, both using O(n) space.

For Steps 4 and 5 we extend vertical lines from each of the O(n) vertices (including

points of vertical tangency) of the forbidden space. This yields a vertical decom-

position of the free space into cells. These cells can be computed and connected

together with a sweep-line algorithm in O(n log n) time and O(n) space.

2.4. Low obstacle density

The asymptotic upper bounds derived for our algorithm so far assume nothing

about how densely packed the obstacles are. An environment Γ is said to have an

obstacle density of λ if λ is the smallest positive number for which any disk D

intersects at most λ obstacles γ ∈ Γ with length(γ) ≥ diam(D). By property (W3)

of well-behaved compliant path sections there is a constant d = O(ro) such that,

after the object has been pushed a distance d along a path section, the pusher can

then remain in the (obstacle-free) sweep area of the object for the rest of the section.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 37

The combined sweep area of the object and pusher for this length-d “prefix” of the

path section fits in a disk of diameter d+ 2ro + 4rp = O(ro), and can thus intersect

at most O(λ · ro2/δ2) obstacles, where δ is the length of the shortest obstacle.

Assuming constant λ and δ = Ω(ro), the configuration space for this prefix has

constant complexity.

The complexity of the remaining “suffix” of the path section can be Ω(n),

though, so the total complexity of the configuration space can still be Ω(kn). How-

ever, for this suffix we can replace the O(n)-complexity shape
⋃
γ∈Γ Cγ,i by the

O(1)-complexity shape that forces the pusher to remain in the object’s sweep area.

This yields the reduced configuration space (see Fig. 4(c)), which admits a push plan

if and only if the original configuration space does, but has lower complexity and

can be computed more quickly:

Theorem 3. Assuming constant λ and δ = Ω(ro), the reduced configuration space

has complexity O(1) per path section (that is, O(k) in total), and can be computed

in O((k + n) log(k + n)) time using O(k + n) space.

Proof. For the reduced configuration space, computing Cγ,i individually for each

γ ∈ Γ and τi ∈ τ is wasteful. Most of these kn shapes will either be empty (if

the distance between τi and γ is too great), or irrelevant (if τi is compliant and

only comes close to γ past its length-d prefix). Let τ ′i denote the length-d prefix

of τi if τi is a compliant section, and τ ′i = τi otherwise. Then Cγ,i is relevant and

non-empty if and only if the curve τ ′i intersects the capsule γ⊕D(2ro+ rp). We use

an algorithm due to Balaban14 to find the I points of intersections between these k

curves and n capsules in O((k + n) log(k + n) + I) time and O(k + n) space. From

the above discussion it follows that each compliant path section contributes only

O(1) to I for the reduced configuration space. If non-compliant sections contribute

any intersections, then no push plan can exist and we can abort the intersection

computation. Thus, we can determine the relevant obstacles for all path sections in

O((k+n) log(k+n)) time. Since each section only has O(1) relevant obstacles, the

remaining steps to compute the reduced configuration space can be done in O(1)

time per path section.

3. Pushing While Maintaining Contact

Not every path through the free space actually yields a push plan. The path through

the configuration space needs to be s-monotone, that is, any “vertical line” (having

a constant value for s) must intersect the path in at most one point. If a path

through the configuration space is not s-monotone, then the object would be going

backwards on occasion, for which the pusher would have to pull. To prevent this,

we remove from the cell graph all cells that are not reachable from the starting

configuration by a valid contact-preserving push plan. It is then fairly simple to find

an arbitrary s-monotone path in linear time, by following cell boundaries (which

are s-monotone).



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

38 M. de Berg & D. H. P. Gerrits

θ2

θ1

s0

θ0

s12

c0 c1

σ2

σ1

c2 τ (s12)

τ (s0)

σ2

σ1 γ

(a) (b)

Fig. 5. Hypothetical situation in which a configuration-space cell would have an out-degree greater

than one.

Such a path can lead to a lot of unnecessary motion for the pusher, and it is

tempting to instead compute a Euclidean shortest path through the reachable cells.

This would also yield an s-monotone path, but not necessarily one that minimizes

the pusher’s movement in the work space. We can circumvent this problem by

performing our computations in the work space, instead of in the configuration

space.

3.1. Cells in the work space

Each cell of the free-space decomposition corresponds to a contiguous subset of

the valid configurations. The pusher positions of these configurations also form a

contiguous region in the work space. We call this region the corresponding work-

space cell. All work-space cells glued together by their common boundaries form the

region that P may move in to accomplish O’s desired motion, provided we consider

non-adjacent cells to be on a different “layer”. We cannot just take the union of the

cells, as P could then take a shortcut and lose O along the way. Figure 3 shows such

a situation: moving through the union, P could push O to the lower-right corner,

then leave it there and move on towards the top left. This way P always stays within

the union of the work-space cells, but still fails to push O to its destination.

Lemma 1. All cells in the cell graph have an out-degree of at most one.

Proof. Suppose cell c0 has out-edges to cells c1 and c2. From any (s0, θ0) ∈ c0
there must then be a push plan σ1 to any (s12, θ1) ∈ c1 and a push plan σ2 to any

(s12, θ2) ∈ c2, as in Fig. 5(a). Property (W1) of well-behaved path sections then

implies that any obstacle γ that causes c1 and c2 to be separate cells must be in the

region between the areas swept out by the pusher along σ1 and σ2, and the area

occupied by the object positioned at τ(s12), as in Fig. 5(b). But because the pusher

maintains contact with the object at all times, this region must lie entirely within

the area swept out by the object, which we assumed was obstacle free.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 39

3.2. Computing a shortest contact-preserving push plan

The union of the shortest paths from a point p inside a simple polygon to all

the vertices of the polygon forms a tree. Given a triangulated simple polygon, this

shortest-path tree can be computed by a linear-time algorithm due to Guibas et al.15

The trivial shortest-path tree for the triangle containing p is extended triangle by

triangle until it spans the whole polygon. Garćıa-López and Ramos16 give a similar

algorithm for a pseudo-triangulated simple splinegon, an analogue of a polygon using

convex curves as edges. This can be used to yield a linear-time algorithm for shortest

contact-preserving push plans through a given configuration space, as explained in

the proof below.

To not have to make a case distinction between high and low obstacle density, we

let q denote the maximal complexity of the configuration space for one path section.

The unreduced configuration space has q = O(n), while the reduced configuration

space under low obstacle density has q = O(1). Note, though, that a shortest push

plan through the reduced configuration space is not necessarily as short as one

through the unreduced configuration space. Hence q = O(n) if we require a shortest

push plan.

Theorem 4. Given a k-section configuration space with complexity O(q) per path

section, a shortest contact-preserving push plan (of complexity O(kq)) through this

space can be computed in O(kq) time and space.

Proof. A work-space cell w is the area A swept out by the push range over a

piece of the object’s path, minus the positions where the pusher would intersect

any obstacles. Because of the way configuration-space cells are defined by a vertical

decomposition, at most two obstacles can influence the shape of one work-space cell.

Thus w is the set difference of A with at most two capsules. By property (W2) of

well-behaved path sections, A is bounded by a constant number of convex, constant-

complexity curves, so w must be as well. Thus a work-space cell is a splinegon with

O(1) vertices, which can be pseudo-triangulated in O(1) time.16 Figures 6(a) and

6(b) show an example of a work space and its work-space cells.

By Lemma 1, the reachable configuration space is a linear chain of O(kq) cells.

Having partitioned each cell into O(1) pseudo-triangles, we then use the algorithm

of Garćıa-López and Ramos16 to compute the shortest-path tree of the work-space

cells (pseudo-triangle by pseudo-triangle) in O(kq) time and space. Figure 6(c)

shows the resulting shortest-path tree for the example above. From this tree we

can then extract the shortest path from the pusher’s (black) starting position to its

(bold) goal arc. This takes time proportional to the number of vertices on the path,

which is O(kq).

4. Pushing and Releasing

Until now we’ve assumed the pusher can maintain contact with the object at all

times. However, the situation depicted in Figs. 7(a) and 7(b) does not admit such



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

40 M. de Berg & D. H. P. Gerrits

contact-preserving push plans. (In fact, this is true for any object path with the

same start and end point, as proven in Appendix A.) It does admit an unrestricted

push plan, as can be seen in Figs. 7(b) and 7(c).

4.1. Canonical releasing positions

Whenever the push range is split into multiple contiguous ranges by obstacles, it

may make sense for P to let go of O and try to reach one of these other positions.

In the configuration space this situation corresponds to a vertical line intersecting

multiple cells. In general, there are infinitely many such potential releasing positions,

thus it’s infeasible to try them all. Instead, we consider only vertical lines that go

through a vertex of a cell or of a configuration-space obstacle (where points of

τ

(a) (b)

(c) (d)

Fig. 6. (a) An example work space, and (b) its corresponding work-space cells. The pusher’s starting
point is drawn black, and its destination curve is drawn fat. (c) The final step in constructing (b)’s

shortest-path tree. (d) The resulting (optimal) push plan.

0

0 1

+π

−π
r

τ (r)

(a) (b) (c)

Fig. 7. (a) An example work space for which no contact-preserving push plan exists, (b) its con-

figuration space, and (c) an unrestricted push plan for it, doing one release at position τ(r).



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 41

σ σ

σσ

(a) (b)

Fig. 8. The two situations in which moving the object backwards along τ would make us unable

to maintain the pusher path σ.

vertical tangency are also considered vertices). We call the resulting set of O(kq)

positions (where O(q), again, is the complexity of the configuration space of a path

section) the canonical releasing positions. It suffices to check only these positions,

as expressed by the following lemma:

Lemma 2. If an unrestricted push plan exists for a given input, then there is also

an unrestricted push plan where all releases happen at canonical releasing positions

as defined above.

Proof. Suppose we have an unrestricted push plan with one or more releases that

don’t happen at canonical releasing positions. Let τ(r) be an object position at

which such a release happens, and σ be the path that the pusher follows from the

position where it releases the object to the position where it recontacts. Because

r is not a canonical releasing position there must be a canonical releasing position

r′ < r with no other canonical releasing positions in between r′ and r.

Suppose the releasing point for σ lies in cell c1 of the free space and the recontact

point in cell c2. Now imagine moving the object backwards along τ from τ(r) to

τ(r′). In doing this we want to adjust our push plan so it remains valid, making it

move a little less through cell c1, a little more through cell c2, and adjusting path

σ accordingly for its new endpoints.

There are two ways in which this could fail: either the interval of valid pusher

positions in which one of the endpoints of path σ resides vanishes, as in Fig. 8(a),

or path σ gets cut off between the obstacles and the object, as in Fig. 8(b). The

former can only happen at a vertex of c1 or c2, and the latter can only happen at

a vertex of some configuration-space obstacle Cγ . But such points would then form

canonical releasing points between r and r′, contradicting our assumption.

4.2. Computing an unrestricted push plan

Restricting ourselves to canonical releasing positions, we cannot guarantee a short-

est push plan anymore, so we abandon the work-space-cell approach and instead

work with the cell graph directly. The cell graph encodes which configurations

are reachable from which other configurations, assuming the pusher and object



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

42 M. de Berg & D. H. P. Gerrits

maintain contact. By adding edges, we’ll transform this into the extended cell graph,

which encodes the same connectivity information when the pusher can let go of the

object. To determine whether an edge between two cells should be added we have to

solve a standard path-planning problem for the pusher, with the stationary object

being an additional obstacle. The algorithm in more detail is as follows:

(1) Compute a road map S for P among the obstacles.1

(2) At each canonical releasing point r:

(a) Add O positioned at τ(r) as an extra obstacle in S to get Sr.
(b) Determine the set Cr of cells intersected by a vertical line through r.

(c) Determine for each cell in Cr to which component of Sr its pusher positions

belong.

(d) Add edges in the cell graph between cells sharing a component of Sr.
(3) Compute a path through the extended cell graph.

(4) Convert the path into a push plan. For edges of the original cell graph this is

straightforward, for every extra edge use the respective Sr to find a path for P .

To construct the initial road map (Step 1) we take the union of the capsules γ⊕D(rp)

for γ ∈ Γ, and then construct a vertical decomposition of its complement. The union

can be done in O(n log2 n) worst-case time (using an algorithm by Kedem et al.12),

or inO(n log n) expected time (using an algorithm by Miller and Sharir13). After this

preprocessing, the time taken by the remaining steps is expressed by the following

theorem:

Theorem 5. Given a road map for P among the obstacles, and a configuration

space with complexity O(q) per path section, an unrestricted push plan (of complexity

O(kqn)) can be computed in O(kq log(kq)+kq2 log n+kqn) time using O(kqn) space.

Proof. While computing the configuration space, all O(kq) vertices defining canon-

ical releasing positions were already computed, so this takes no extra time. Steps 2,

3, and 4 can then be done in the stated bounds using standard techniques for point

location (Steps 2(b) and 2(c)), and depth-first search (Step 3).

5. Conclusion

We have studied the manipulation path-planning problem of a disk-shaped pusher

moving a disk-shaped object along a given path, among non-intersecting line

segments in the plane. We looked at the case where the pusher and object must

maintain contact, as well as the case where there is no such restriction. For the

contact-preserving case, we improved the running time of the only known algorithm,

and gave the first algorithm to compute a shortest push plan. For the unrestricted

case, we gave the first algorithm to compute a push plan at all. (The running times

of these algorithms were summarized in Table 1 in the introduction.) Our algo-

rithms also handle a more general class of input paths than prior work, and can



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 43

be modified to handle a more general class of obstacles as well (specifically, convex

pseudodisks).

An obvious open question is how to compute a shortest unrestricted push plan,

or if the running times of our algorithms can be further improved. Additionally, one

may be interested in other shapes of the pusher and/or object, but a pushing motion

may then rotate either or both of them. The respective orientations of the pusher

and object will make the configuration space higher dimensional. Lynch and Ma-

son17 discuss conditions under which their relative orientation remains fixed, making

the problem somewhat more tractable, but our method based on a 2-dimensional

configuration space would still not suffice.

Applying the configuration-space approach to the problem where only a destina-

tion for the object is given (rather than a path), is also non-trivial. While there is a

straightforward analogue to our configuration-space obstacles in this 3-dimensional

configuration space, there is none for our forbidden push ranges. It may be possible

to use some form of constrained path finding instead, but we have not explored this

possibility.

References

1. J. C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, 1991).
2. M. T. Mason, Mechanics of Robotic Manipulation (MIT Press, 2001).
3. K. Y. Goldberg, Orienting polygonal parts without sensors, Algorithmica 10(2–4)

(1993) 210–225.
4. H. Arai and O. Khatib, Experiments with dynamic skills, Proc. Japan-USA Symp.

Flexible Automation (1994), pp. 81–84.
5. M. T. Mason and K. M. Lynch, Dynamic manipulation, Proc. IEEE/RSJ Int. Conf.

Intelligent Robots & Systems (1993), pp. 152–159.
6. D. Nieuwenhuisen, A. van der Stappen and M. Overmars, Pushing a disk using

compliance, IEEE Trans. Robotics 23(3) (2007) 431–442.
7. S. M. LaValle and J. J. Kuffner, Rapidly-exploring random trees, Algorithmic and

Computational Robotics: New Directions, eds. B. R. Donald, K. M. Lynch and D. Rus
(2001), pp. 293–308.

8. M. de Berg, M. J. Katz, A. F. van der Stappen and J. Vleugels, Realistic input models
for geometric algorithms, Algorithmica 34(1) (2002) 81–97.

9. P. K. Agarwal, J.-C. Latombe, R. Motwani and P. Raghavan, Nonholonomic path
planning for pushing a disk among obstacles, Proc. IEEE Int. Conf. Robotics &
Automation, Vol. 4 (1997), pp. 3124–3129.

10. D. Nieuwenhuisen, Path planning in changeable environments, Ph.D. dissertation,
Universiteit Utrecht, The Netherlands (2007).

11. M. A. Peshkin and A. C. Sanderson, Minimization of energy in quasi-static manipu-
lation, IEEE Trans. Robotics & Automation 5(1) (1989) 53–60.

12. K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles, Discr. Comput. Geom.
1 (1986) 59–70.

13. N. Miller and M. Sharir, Efficient randomized algorithm for constructing the union of
fat triangles and of pseudodiscs, unpublished manuscript (1991).

14. I. J. Balaban, An optimal algorithm for finding segment intersections, Proc. 11th ACM
Symp. Comput. Geom. (1995), pp. 211–219.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

44 M. de Berg & D. H. P. Gerrits

15. L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. E. Tarjan, Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple polygons,
Algorithmica 2(1) (1987) 209–233.

16. J. Garćıa-López and P. A. Ramos, A unified approach to conic visibility, Algorithmica
28(3) (2000) 307–322.

17. K. M. Lynch and M. T. Mason, Stable pushing: Mechanics, controllability, and plan-
ning, Int. J. Robotics Res. 15(6) (1996) 533–556.

Appendix A. Proof that Releasing can be Necessary

In Fig. 7(a) we saw a work space which permits no contact-preserving push plan

for the given object path. One may wonder whether this object path is merely ill-

chosen, and whether a different object path would admit a contact-preserving push

plan. We will prove that this is not the case.

Assume, without loss of generality, that ro = 1 and rp = µ, with 0 < µ < 1. Our

goal is to get the object from the lower left part of Fig. 9(a), around the bend, to

the upper right part of the figure. The path τ which the object then takes will have

to go through the collision-free area depicted in Fig. 9(b).

Because the horizontal and vertical corridor are exactly as wide as the object,

the object can only move through them in one way (and this is easily accomplished

by the pusher). We’ll therefore consider the intermediate section of the object’s

path connecting these two straight-line sections, that is, the subpath from point b

to point e in Fig. 9(b).

In particular, we’ll look at the highest possible such subpath, that is, the subpath

that maximizes the object’s distance traveled in the positive y direction for the

distance traveled in the positive x direction. This motion is achieved by minimizing

the pusher’s y-coordinate at all times. Thus the pusher should start by sliding

compliantly along the bottom obstacle. This will turn the object on a circular arc

around vL, but it can’t always reach e via this arc, as stated in the following lemma:

2µ

2

2

y

x

vL vR(0, 1) (2, 1)

(0, 0)

2µ

2− µ

1

vB
(1− µ,−1)

b

e

(a) (b)

Fig. 9. (a) The environment with the coordinate system that we’ll use. Measurements assume that

ro = 1 and rp = µ. (b) The initial situation, and the area through which the object’s center can
move without intersecting any obstacles.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 45

β
α

β
1

1 + µ

√ µ
2 +

2µ
+
2

√
6µ− 2

2
−
µ

√ µ
2 +

2µ
+
2

α

vL vL

1

1 + µ
m1

1 +
µ

1

ϕ

(a) (b)

Fig. 10. (a) Initial position. (b) Position m1 where O has turned by an angle ϕ = a− b around vL
and P can no longer turn it further. This happens when µ > 1/3.

Lemma 1. In the example of Fig. 9, the pusher cannot push the object compliantly

around vL all the way to e if µ > 1/3.

Proof. In this motion, the object’s position describes a circular arc with radius

ro around vL. To keep the object going along this arc, the ray from the pusher’s

center to the object’s center must intersect the arc, either properly or tangentially.

So if there is a position of the object along the arc such that the pusher cannot

push tangentially to the arc, the motion cannot be completed. Figure 10 shows that

this happens when
√
µ2 + 2µ+ 2 > 2−µ. Squaring both sides of the equation and

simplifying yields µ > 1/3.

From now on, assume that µ > 1/3. Lemma 1 then implies that if the pusher

tries to push the object compliantly around vL, the object will end up at some

point m1 between b and e. From b to m1, the object will have turned by some angle

ϕ < π/2 around vL, where (see Fig. 10):

ϕ = α− β

sin(α) =
2− µ√

µ2 + 2µ+ 2
cos(α) =

√
6µ− 2√

µ2 + 2µ+ 2
(A.1)

sin(β) =
1√

µ2 + 2µ+ 2
cos(β) =

1 + µ√
µ2 + 2µ+ 2

.

Recall that θ is the pushing angle, that is, the angle that the line from P ’s to O’s

center makes with the positive x-axis. If the pusher continues its straight line along

the bottom obstacle, the object will move away from vL to the right and upwards,

thus increasing θ. The resulting motion was studied by Agarwal et al.,9 and they

refer to it as a hockey-stick curve. As a function of θ, this motion is given by the



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

46 M. de Berg & D. H. P. Gerrits

vR
m2

vB

vR

m2

vB


2−

√
8µ

2+µ , 1−
2−µ
2+µ




vR=(2,1)

(2−√8µ , 1− (2− µ))

m2

vB

(a) (b) (c)

Fig. 11. Being pushed along the hockey-stick curve, the object will eventually hit the outer corner

vertex vR. (a) If the object hits vR high enough, the pusher has no trouble completing the path

for the object. (b) But if the object hits vR too low, the pusher can’t do anything but push the
object into the pocket hole. (c) The cut-off point is when the line from the pusher’s center through

m2 passes through vR.

following equations, where ϕ ≤ θ ≤ π/2:

x(θ) = (1 + µ) ln

(
tan(θ/2)

tan(ϕ/2)

)
+ (1 + µ)

(
cos(θ)− cos(ϕ)

)
+ sin(ϕ)

(A.2)

y(θ) = (1 + µ) sin(θ)− 1 + µ .

This motion also won’t always get the object to e, as stated in the following lemma:

Lemma 2. Following the hockey-stick curve from m1 on, the object will eventually

hit vertex vR, at some point m2. When m2 is on or below the line y = 1− 2−µ
2+µ , the

only possible continuations of the object’s path lead it into the pocket hole on the

right, and e cannot be reached.

Proof. The curvature of the hockey-stick curve is smaller than that of the circular

arc from b to e around vL. Thus the object will reach the horizontal line through e

at a point to the right of e itself. But by then point vR would have already passed

into the object’s interior. Hence the object inevitably bumps into vR at some point

m2 along the hockey-stick curve.

The y-coordinate of m2 uniquely determines the angle θ at which the pusher

can continue pushing from its contact with the bottom obstacle, as well as the push

range which would push the object upwards compliantly on a circular arc around

vR. If m2 is high enough, θ may lie in this push range, as seen in Fig. 11(a).

If m2 is too low, θ will be outside of the needed push range. Having pushed the

object against vR, the pusher will still be to the left of vertex vB , thus it can not

get below the object. Therefore, the only remaining options for pushing lead the

object into the pocket hole, as seen in Fig. 11(b).

The cut-off point where θ lies just outside the needed push range is when P ’s

center, O’s center, and vertex vR are colinear. O’s center then has coordinates(
2−

√
8µ

2+µ , 1−
2−µ
2+µ

)
, as illustrated by Fig. 11(c).



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

Computing Push Plans for Disk-Shaped Robots 47

We are now ready to formulate and prove the main theorem of this appendix.

Theorem 1. There is a µc, 1/3 < µc < 1, such that for all µ > µc, the example of

Fig. 9 admits no contact-preserving push plans for any of the possible object paths

τ , while it does admit an unrestricted push plan (for some of these paths).

Proof. From Eq. (A.2) it follows that the hockey-stick curve intersects the line

y = 1− 2−µ
2+µ exactly when:

sin(θ) =
2− µ
2 + µ

. (A.3)

The point on this line where the object touches vR has x-coordinate 2−
√

8µ
2+µ . Thus

vR will be hit when the object is on or below the line y = 1− 2−µ
2+µ if and only if:

x(θ) ≥ 2−
√

8µ

2 + µ
. (A.4)

Combining Eqs. (A.1) through (A.4) this condition becomes:

ln(f(µ)) ≥ g(µ) , (A.5)

where:

f(µ) =

(
(2− µ) (1 + µ) − √6µ− 2

) (
2 + µ−√8µ

)

(2− µ)
(
µ (3 + µ) − (1 + µ)

√
6µ− 2

)

and

g(µ) =

√
6µ− 2 + 2−√8µ

1 + µ
.

 0

 0.5

 1

 1.5

 2

1/3 1/2 µc 2/3 5/6 1

ln(f(µ))
g(µ)

Fig. 12. The smallest µ value for which the example of Fig. 9 admits no contact-preserving push
plan.



September 6, 2013 9:43 WSPC/Guidelines S0218195913500027

48 M. de Berg & D. H. P. Gerrits

On the domain µ ∈ (1/3, 1), both g and the logarithm of f are continuous

functions, and they intersect each other at exactly one µ = µc (≈ 0.57173). For

µ < µc the function g has a greater value than the logarithm of f , and vice versa

for µ > µc, as shown in Fig. 12. Thus there is a µc such that, for all µ > µc, the

highest possible path for the object hits vR at a point too low to escape the pocket

hole. Since any other path is below this highest possible path, no contact-preserving

push plans can exist.

In contrast, for some object paths an unrestricted push plan exists for all µ

between 0 and 1, including those above µc. Figure 13 illustrates one such object

path and the resulting unrestricted push plan.

Fig. 13. When the pusher is allowed to release the object, a push plan does exist.


	Introduction
	Problem statement
	Related work
	Our results

	The Configuration Space
	Preliminaries
	Shape of the configuration space
	Computing the configuration space
	Low obstacle density

	Pushing While Maintaining Contact
	Cells in the work space
	Computing a shortest contact-preserving push plan

	Pushing and Releasing
	Canonical releasing positions
	Computing an unrestricted push plan

	Conclusion
	Proof that Releasing can be Necessary

